arXiv:2510.09244v1 [cs.Al] 10 Oct 2025

Fundamentals of Building Autonomous LLM
Agents *

Victor de Lamo Castrillo'®, Habtom Kahsay Gidey?®, Alexander Lenz?®, and
Alois Knoll?

! Universitat Politécnica de Catalunya, Barcelona, Spain
victor.de.lamo@estudiantat.upc.edu
2 Technische Universitiat Miinchen, Miinchen, Germany
{habtom.gidey, alex.lenz, knoll}@tum.de

Abstract. This paper reviews the architecture and implementation meth-
ods of agents powered by large language models (LLMs). Motivated by
the limitations of traditional LLMs in real-world tasks, the research aims
to explore patterns to develop “agentic” LLMs that can automate complex
tasks and bridge the performance gap with human capabilities. Key com-
ponents include a perception system that converts environmental percepts
into meaningful representations; a reasoning system that formulates plans,
adapts to feedback, and evaluates actions through different techniques like
Chain-of-Thought and Tree-of-Thought; a memory system that retains
knowledge through both short-term and long-term mechanisms; and an
execution system that translates internal decisions into concrete actions.
This paper shows how integrating these systems leads to more capable
and generalized software bots that mimic human cognitive processes for
autonomous and intelligent behavior.

Keywords: Autonomous LLM Agents - Perception - Reasoning and
Planning - Memory Systems - Action Systems - Multi-agent Systems

1 Introduction

1.1 Motivation

Artificial intelligence (AI) is a powerful technology that is transforming cognitive
automation and fundamentally reshaping the way tasks are performed [13,14,37].
Today, one can develop remarkable systems without the need to write complex
algorithms or master low-level code. We are closer than ever to realizing the
idea that “if you can think it, you can build it.” Instead of relying solely on
programming skills, what increasingly matters is understanding how a human
would reason through a problem, since LLM agents can learn and mimic human
problem solving by externalizing intermediate reasoning and refining it through
self-feedback [26, 38,49, 58, 60,65, 66].

* This paper is based on a seminar technical report from the course Trends in Au-
tonomous Agents: Advances in Architecture and Practice offered at TUM.

2 de Lamo et al.

LLM agents represent a new paradigm that breaks traditional barriers. They
enable the execution of tasks that were previously costly, time-consuming, or
even infeasible. More than tools, agents act as collaborators, assisting humans
in dynamic environments and automating decision-making in critical systems.
However, this transformation is still in its early stages. Engaging with LLM agents
is comparable to engaging with a new species, one that we are only beginning to
understand, train, and guide [3].

This raises a crucial question: How can we build agents who think and act
intelligently? How should we structure their ‘minds’ so that they can interpret
information, reason, plan effectively, and make decisions that we can trust?
Building on this vision of LLM agents as intelligent collaborators, this review
explores and defines the architectural foundations that enable their autonomous
and effective performance in complex tasks [20].

1.2 Review Objective

The primary objective of this research is to review the design and implementation
of intelligent agents powered by large language models (LLMs) to improve the
execution of complex automation tasks [13,14]. Specifically, the review focuses on
the agents’ perception, memory, reasoning, planning, and execution capabilities.
The review aims to accomplish this by pursuing the following particular goals:

1. Explore the options for perception systems, including multimodal LLMs and
image processing tools, analyzing their contributions to interpreting visual
inputs for task execution.

2. Examine reasoning architectures, such as Chain-of-Thought (CoT) and Tree-
of-Thought (ToT), and their contributions to generating structured plans for
complex tasks, including how reflection enhances iterative problem solving.

3. Explore and evaluate memory-augmented architectures, such as Retrieval-
Augmented Generation (RAG) and long-term memory systems, investigating
effective methods for information storage to enable practical and useful
applications.

4. Examine the available execution architectures, such as tool-based frameworks,
and code generation approaches, exploring their contributions to automating
tasks.

5. Finally, evaluate the complexity of implementation of each system solution
proposed.

To achieve these objectives, some challenges need to be overcome.

1.3 Problem Statement

Building LLM agents to automate complex tasks can offer useful opportunities
but also pose complex challenges [13,23,61]. Despite all the advances in LLMs,
developing agents that perform well in various scenarios remains a significant

Building Autonomous LLM Agents 3

challenge [23]. The purpose of this study is to address these issues by review-
ing each system’s implementation options, assessing their contributions, and
contrasting various strategies.

Benchmarks such as OSworld [71], alongside studies on autonomous software
agents [13,15,16], reveal key limitations in multimodal agents, highlighting the
following issues:

1. Difficulties in GUI grounding and operational knowledge: Agents
struggle to accurately map screenshots to precise coordinates for their ac-
tions and lack deep understanding of basic graphical user interface (GUI)
interactions and application-specific features.

2. Repetitive actions: Agents frequently predict repetitive actions, indicating
a lack of progress or an inability to break out of loops.

3. Inability to handle unexpected window noise: Agents are not robust to
unexpected elements or changes in Ul layout, such as unanticipated pop-up
windows or dialog boxes.

4. Limitations in exploration and adaptability: Particularly for agents
equipped with modules like “Set-of-Mark” (SoM), it has been observed that
they can constrain the agent’s action space, hindering exploration and adapt-
ability to diverse tasks.

5. Significant performance gap with human capabilities: As reported on
the OSworld website [43], humans achieve a task completion rate of more than
72.36%. In contrast, leading models reach approximately 42.9% completion
(as of June 2025), indicating a substantial gap with human performance.

To address these challenges and guide the investigation of agent design, this
research presents a set of questions to explore the architectural components,
integration strategies, and generalization capabilities of LLM-based agents.

1.4 Research Questions

To guide this survey, we formulate the following research questions that structure
the analysis of architectural foundations, subsystem design, and evaluation of
LLM based agents.

1. RQ1, Design space, What architectural options exist for the core subsys-
tems of LLM-based agents, perception, reasoning and planning, memory, and
execution, and how can they be systematically organized for practitioner use?

2. RQ2, Integration, Which subsystem integration patterns enable reliable
closed-loop autonomy in realistic software environments, for example, GUI
and web tasks that combine visual grounding with structured signals such as
DOM or accessibility trees [30,56]?

3. RQ3, Reasoning efficacy, How do reasoning strategies, for example, CoT,
ToT, ReAct, and parallel planning, such as DPPM or MCTS-based approaches,
affect task success rate, efficiency, and cost?

4 de Lamo et al.

4. RQ4, Memory impact, How do long-term and short-term memory mech-
anisms, for example, RAG and context management, influence accuracy,
robustness to context length limits, and adaptation in long-horizon tasks?

5. RQ5, Failures and mitigation, What are the principal failure modes
in agentic settings, for example, hallucination, GUI misgrounding, repeti-
tive loops, and tool misuse, and which mitigation techniques, for example,
reflection, anticipatory reflection, SoM, and guardrails, are most effective?

6. RQ6, Evaluation and generalization, Which benchmarks and metrics are
appropriate for assessing these systems, for example, OSWorld, WebArena,
and Mind2Web [8,70,71], and to what extent do agents generalize across
tasks, applications, and interfaces?

Before delving into these research questions, let us first explore the origins of
LLM-based agents.

2 Fundamentals

2.1 Background of LLMs

The introduction of machine learning methods, particularly deep learning, brought
a significant shift by laying the groundwork for advanced modern AI models.
Large language models (LLMs) are among the most significant developments.
Their appearance represents a major breakthrough in AI’s ability to understand
and produce complex language, influencing the state of LLM-based agents today
and their future course.

A key technological advance in the development of LLMs has been the
transformer architecture, distinguished by its “attention mechanism” [52]. This
mechanism allows LLMs to attend to different words in the input enabling them
to understand long-range dependencies [52]. This architectural shift, alongside
their training on vast datasets and the principles of generative A, has enabled
LLMs to perform a wide range of tasks, including natural language processing
(NLP), machine translation, vision applications, and question-answering.

2.2 From LLMs to LLM Agents

LLMs in their standard form have significant limitations due to their chatbot
nature. This restricts their effectiveness in real-world tasks. These models lack
long-term memory, cannot autonomously interact with external tools, and struggle
to pursue goals in dynamic environments. Such shortcomings hinder their perfor-
mance in scenarios requiring sustained reasoning or multi-step workflows [61].

To overcome these constraints, LLMs are guided to follow a reasoning path
and are provided with tools to interact with the environment that enables them
to function as autonomous agents. They are well-suited for dynamic tasks because
they exhibit good planning skills, context adaptability, and they minimize human
intervention. Such agents offer a scalable and flexible solution by simulating
human-like team strategies and leveraging external tools [29].

Building Autonomous LLM Agents 5

However, simply augmenting an LLM with modules, tools, or predefined steps
does not make it an agent, in any case, that would make it a workflow.

2.3 Workflows vs. Agents

Many people confuse workflows with agents, but while both enhance the ca-
pabilities of large language models (LLMs), they are fundamentally different.
Workflows are structured systems that enhance LLMs by enabling tool use,
environmental interaction, or access to long-term memory. However, they are
not agents. Workflows perform well in controlled and predictable environments
where tasks are well defined and follow a fixed sequence of steps. In a workflow,
the LLM follows a pre-established plan created by its designer, broken down
into specific, sequential actions. This rigidity makes workflows highly effective
for repetitive and structured tasks but limits their adaptability. If, during the
workflow, the LLM faces an error, it often struggle to adjust, as they lack the
ability to dynamically re-plan or adapt based on new information.

In contrast, agents are far more versatile and autonomous. Agents are designed
to act according to the feedback from its environment. Rather than relying on
a pre-set plan, agents generate their own strategies tailored to the task and
context, often using techniques like Chain-of-Thought reasoning or iterative
refinement to break down complex problems. This adaptability allows agents to
deal with unexpected challenges, bounce back from mistakes, and function well
in unpredictable environments [3].

To understand how these agents achieve autonomy, we first explore their core
components and their interconnections.

2.4 Constitution of an Agent

Perception System An agent begins its interaction with the world through its
perception system. This component is responsible for capturing and processing
data from the environment, such as images, sounds, or any other form of informa-
tion. Its task is to transform this information into meaningful representations that
the LLM can understand and utilize, such as identifying objects or recognizing
patterns.

Reasoning System The reasoning system receives the task instructions along
with the data from the perception system and formulates a plan that is broken
down into distinct steps. It is also responsible for adjusting this plan based
on environmental feedback and evaluating its own actions to correct errors or
improve execution efficiency.

Memory System The memory system keeps the knowledge that is not embedded
in the model’s weights. This includes everything from past experiences to relevant
documents and structured data stored in relational databases. The LLM uses
this information to enhance the accuracy of its responses.

6 de Lamo et al.

Action System Finally, the action system is responsible for translating abstract
decisions into concrete actions that impact the environment. This module ensures
that the agent’s instructions are carried out in the real or simulated world,
completing the interaction cycle by executing what has been decided. This can
involve using a set of tools, such as calling APIs or writing code to execute mouse
movements in a software environment [39].

Perception System '|'|||' @ @ <—|
‘ Input '

. Memory System
Reasoning System »

] i1
- -
Environment
Execution‘System ' gb @ 41

Fig. 1. Key Components of an Agent’s LLM Architecture

Having outlined the core components that enable an LLM agent’s autonomy,
we now delve into a detailed exploration of the perception system.

3 Perception System

The perception system of an LLM agent essentially acts as its “eyes and ears,”
converting environmental stimuli into a format that the LLM can understand
and process. The complexity of the environment and the kinds of information
required determine the architecture. This challenge can be approached in four
ways: text-based, multimodal, information tree/structured data, and tool-based.

3.1 Text-Based Perception (Pure LLM)

The simplest form in which the environment is described is purely in text. The
LLM receives and processes this text description. In this mode, the environment
provides textual observations directly to the LLM’s prompt. This could be a
description of the current state, recent events, or results of actions taken. In this
environment, the perception system does not need to intervene.

Building Autonomous LLM Agents 7

This approach offers low computational overhead for perception and integrates
directly with the LLM’s core capabilities. However, it is limited to environments
that give the response to LLM interactions in text. This is practical for chats or
text-driven simulations.

3.2 Multimodal Perception

Agents can process and integrate information from a variety of sources, mainly
textual and visual (images, videos), thanks to multimodal perception. For agents
functioning in real-world or graphical user interfaces (GUIs), this capability is
crucial. In the context of LLM agents, this is largely achieved through Vision-
Language Models (VLMs) and their more advanced successors, Multimodal Large
Language Models (MM-LLMs). These models aim to bridge the gap between
images and words, allowing agents to understand and generate content across
both modalities.

Although significant progress has been made in the extension of LLMs to
vision, it still has some challenges. For instance, most models still struggle with
precise spatial relationships or accurate object counting without external aid [9].

Regardless of the specific training paradigm, a fundamental principle is the
learning of a unified embedding space for vision and language. This means
that both visual and textual data are converted into numerical representations
(embeddings) that can be processed and compared together by the model [34].

MM-LLMs represent a significant advancement, distinguished by their ap-
proach of augmenting powerful, off-the-shelf LLMs to support multimodal inputs
or outputs. Unlike VLMs, which primarily aim to align visual and linguistic
representations, MM-LLMs leverage the inherent reasoning capabilities of a large
language model as their central processing unit. This enables them not only to
process and connect modalities but also to perform complex reasoning, planning,
and generation across a diverse range of multimodal tasks.

The general architecture of MM-LLMs typically comprises a structured
pipeline with distinct components [67]:

— Modality Encoder (ME): This component is responsible for encoding
inputs from various modalities, such as images, videos, or even audio and
3D data, to obtain corresponding features or embeddings. For visual inputs,
specialized encoders like Convolutional Neural Networks (CNNs) or Vision
Transformers (ViT) are used to extract rich visual representations [34,45].

— Input Projector: This component aligns the encoded features from non-
textual modalities (e.g., visual embeddings) with the text feature space of the
LLM. It acts as a bridge, transforming the visual embeddings into a format
that the LLM can comprehend and integrate alongside textual inputs. This
processing ensures that the visual embeddings are effectively supplied to the
LLM, enabling the LLM to leverage its pre-trained linguistic knowledge for
multimodal reasoning [34, 50].

— LLM Backbone: This is the core reasoning engine. The processed and
aligned multimodal representations (visual embeddings and textual features)

8 de Lamo et al.

are fed to the LLM. The LLM processes these representations, answering
using the semantic understanding of the inputs.

— Output Projector (for multimodal generation): For tasks requiring out-
puts in other modalities (e.g., generating images), this component maps signal
token representations from the LLM Backbone into features understandable
by a Modality Generator.

— Modality Generator (for multimodal generation): This component is
tasked with producing outputs in distinct modalities, such as synthesizing
images using models like Latent Diffusion Models.

Modality Encoder MEy Fr LLM Backbone D Modality Generator MGy
Textt —p —
NFNetF6
§ Flan-TS ChetGLm Image
it oeuthrojeconBn) Output Projector B7_x.
image | Linear Projector P —
image video | cupir — w2 Quen
Tiny Transformer
eacupvr Fx Py S H -
Video ﬁ» T == | cosatenton | =—=p- Chinchilla OPT =<y Xy —_
MLP Zeroscope
I QFormer
Cromer Palm LLaWA
Audio -|||||-|- oo | HuBERT P-Former £ -|||||-|-
Ma-Former LLaMA-2 Vicuna (4]
BeaTs : "y AudiolOM

T T
Multimodal Understanding Multimodal Generation

Fig. 2. Architecture of Multimodal Large Language Models (MM-LLMs) for Under-
standing and Generation [67]

While the architectural components of MM-LLMs enable multimodal process-
ing, their perceptual capabilities often require further enhancement to address
limitations in visual understanding, as explored in the following subsection.

Enhancing Perception in MM-LLMs As outlined in the paper “VCoder:
Versatile Vision Encoders for Multimodal Large Language Models” by Jain et al.
(2023) [28], traditional MM-LLM systems often face limitations in fundamental
visual perception, such as accurately identifying or counting objects, and a
tendency to hallucinate non-existent entities.

A faster and more cost-effective way to enhance perception (rather than
improving each individual component of an MM-LLM) is to use visual encoders.
These encoders, which can be separate models, extract relevant information from
images to help the MM-LLM interpret them more effectively. While this approach
doesn’t match the performance gains of directly improving each component of
the MM-LLM, it offers a practical trade-off by significantly improving results at
a much lower computational and developmental cost. These are different ways to
enhance visual perception with visual encoders:

— Segmentation and Depth Maps: VCoder enhances MM-LLM capabilities
through a specialized adaptive architecture and the integration of additional

Building Autonomous LLM Agents 9

perception modalities. It functions as an adapter to a base MM-LLM, enabling
the model to process “control inputs” such as segmentation maps (offering
fine-grained object and background information) and depth maps (providing
spatial relationship details). Information from these inputs is projected into
the LLM’s embedding space via additional vision encoders [45].

Semantic Object Identification

<depth> from
DINOv2 DPT

<seg> from
OneFormer

<image> £rom
COCO dataset

USER: <seg> <image> What objects can be seen in the
image? Perceive as done for semantic segmentation.

USER: <seg> <image> What objects can be seen in the
image? Perceive as done for instance segmentation.

question text £rom
prompting GPT-4

ASSISTANT: The objects present in the image are:
grass, person, tree, house, car, frisbee, fence, window

answer text £zrom

‘two people, car, frisbee. OneFormer output

ASSISTANT: The objects present in the image are: ‘

USER: <seg> <image> What objects can be seen in the
image? Perceive as done for panoptic segmentation.

of their perceived distance from the foreground fo the background?

USER: «depth> <seg> <image> Could you list the objects in the image in order ‘

ASSISTANT: The objects present in the image are:

grass, tree, house, two people, frisbee, car. person, person-2, car, free, house, grass.

ASSISTANT: The depth order for objects present in the image is: frisbee, ‘

Panoptic Object Identification Object Order Perception

Fig. 3. Usage of segmentation and depth maps for MM-LLM perception

28]

— Set-of-Mark Operation: To enhance the model’s ability to handle complex
visual tasks, Set-of-Mark (SoM) operation provides a structured approach to
guide MM-LLMs in processing visual inputs. As seen in Fig. 4 set-of-mark
process consists in annotating images with explicit markers (e.g., bounding
boxes or labels) that highlight key regions or objects, enabling the model to
focus on specific areas during reasoning. This technique improves the model’s
understanding of the image and task-specific performance [64].

Experimental evidence presented in the papers [28,64] indicates that MM-
LLMs adapted with VCoder and SoM significantly outperform baseline models
on object-level perception tasks, demonstrating improved counting accuracy and
reduced hallucination. This highlights the ongoing efforts to enhance the granular
perception capabilities of LLM-based agents.

While techniques like Set-of-Mark and VCoder enhance visual perception
through targeted annotations and prompting, structured data approaches, such
as Accessibility Tree and HTML utilization, offer alternative methods for robust
environmental interpretation, as explored in the following subsection.

10 de Lamo et al.

g

&

4
==

Fig. 4. Image with Set-of-Mark [64]

3.3 Information Tree/Structured Data Perception

— Accessibility Tree Utilization: OSCAR [56] utilizes an Ally tree gener-
ated by the Windows API for representing GUI components, incorporating
descriptive labels to facilitate semantic grounding.

— HTML Utilization: Meanwhile, DUALVCR |[30] captures both the visual
features of the screenshot and the descriptions of associated HTML elements
to obtain a robust representation of the visual screenshot.

3.4 Tool-based Perception

Beyond direct multimodal inputs and structured data retrieval, LLM-based agents
can significantly enhance their perception capabilities through tool augmentation.
This means utilizing external tools and APIs to enable the agent to gather,
process, and interpret data from a wider variety of sources, including real-world
sensors and specialized databases. The mechanism of integration typically involves
the LLM generating specific tool calls based on its current understanding and
goals, with the results from these tools being “fed back” into the LLM [44,47].

Categorizing Tools for Perception The diverse landscape of external tools
available to LLM agents can be broadly categorized based on the type of infor-
mation they help perceive:

— Web Search and Information Retrieval APIs: These tools allow agents
to access vast amounts of up-to-date information, facts, and specific data
points from the internet. By issuing queries to search engines (e.g., Google
Search API) or structured knowledge bases (e.g., Wikipedia API), agents can

Building Autonomous LLM Agents 11

perceive real-time events, verify facts, or retrieve details beyond their training
data cutoff. This helps the agent fill in missing environmental information and
is crucial for tasks requiring current affairs knowledge or factual accuracy [40,
44,47].

— Specialized APIs: Agents can use domain-specific APIs designed for specific
data types. Examples include weather APIs (for perceiving current and
forecasted climatic conditions), stock market APIs (for real-time financial
data), or scientific databases and literature APIs (for accessing specialized
research papers and experimental data). These tools enable agents to perceive
specific information relevant to niche tasks [32,44], and can be implemented
as document-centric microservices for knowledge discovery [17].

— Sensor Integration (Conceptual via Intermediary Tools): While an
LLM agent does not directly interface with physical hardware sensors, its
perception system can be augmented to interpret data originating from them.
This is achieved through intermediary tools or services that convert raw
sensory data (e.g., temperature readings, GPS coordinates, accelerometer
data) from real-world or simulated environments into a digestible format
(textual descriptions, structured data like JSON). This allows the agent to
perceive physical properties and spatial relationships of its environment,
crucial for tasks in robotics or interactive simulations [2,7].

— Code Execution Tools: These tools enable agents to execute code for data
processing and calculations. By generating and executing code (e.g., Python
scripts via an interpreter), agents can perceive insights from raw data, such as
parsing complex log files, running statistical analyses on datasets, or querying
local databases. This allows for dynamic and flexible data interpretation
beyond simple text matching [10,42].

Let’s now explore how integrating the diverse perception system approaches
empowers an LLM agent to effectively handle tasks, as illustrated in a practical
example.

3.5 Example of a Perception System in an LLM Agent

Let’s consider an LLM agent designed to automate tasks within a Graphical User
Interface (GUI), such as managing emails in a web-based application.

Although this could be easier to achieve using the email API, imagine a
scenario where the agent’s objective is to identify, classify, and, if necessary,
respond to incoming company emails.

To achieve this, the agent starts by capturing a screenshot of the email app. It
then applies a Set-of-Mark operation using a visual encoder. This encoder draws
a box on every interactive element on the screen, such as buttons or checkboxes
and stores the coordinates of each box. The output consists of the image with the
bounding boxes and a structured list describing each detected element, including
its text content (if any), a brief description, and its coordinates.

In parallel, the agent retrieves the Accessibility Tree (Ally Tree) or the
HTML source of the page [15]. This tree provides a hierarchical representation of

12 de Lamo et al.

GUI components, such as buttons, text fields, links, and list items—along with
their roles, labels, states (e.g., “unread”). Such data is typically extracted through
browser automation tools.

The accessibility tree and the visual encoder output combine to create a
perception system. This system allows the agent to understand the interface: its
visual layout, the semantics and roles of individual elements, and their spatial
structure. When combined with the image understanding capabilities of a MM-
LLM, this perception system enables the agent to build a rich, actionable model
of the GUI environment.

Despite the robustness of this perception system, it has a number of drawbacks
and restrictions that can impact its performance and reliability.

3.6 Perception Challenges and Limitations

While significant progress has been made in empowering LLM agents with
advanced perceptual capabilities, several critical challenges and limitations persist
across all approaches:

— Hallucination: The tendency for models to “hallucinate” non-existent objects
or misinterpret visual cues remains a significant hurdle. This can lead to
agents making decisions based on incorrect interpretations, resulting in errors
or undesirable behavior [25].

— Latency in Inference Pipelines: Integrating complex perception modules,
especially those involving multimodal processing or external tool calls, can
introduce substantial latency. Real-world applications, particularly those
requiring real-time interaction (e.g., robotics, dynamic GUI automation),
demand rapid perceptual updates. The sequential nature of many perception
pipelines, from raw data acquisition to final LLM interpretation, can create
bottlenecks, hindering the agent’s responsiveness.

— Context Window Limits: Large inputs, such as high-resolution images or
extensive structured data, can generate a vast amount of tokens or embeddings.
Encoding and feeding this entire information into the LLM’s context window
can quickly exceed its limitations [57].

— Data Collection: Training robust perception systems, particularly for mul-
timodal or specialized domains, often requires large volumes of high-quality,
annotated data. The collection of this data can be costly and time-consuming.

— Computational Resources: High-fidelity perception, especially with mul-
timodal inputs, requires high computational resources for both training
and inference. This can be a barrier for execution in resource-constrained
environments or for widespread adoption.

Ultimately, the quality and fidelity of an LLM agent’s perception system
directly affects the reasoning and planning modules. Therefore, continuous ad-
vancements in perception technologies are not merely improvements to one
component, but fundamental enablers for building more intelligent, reliable, and
capable LLM agents.

13

Building Autonomous LLM Agents

Table 1. Summary of Perception Approaches for LLM-Based Agents

Modality Input Format Tool Dependencies Strengths Limitations
Text-Based Plain text None (relies on LLM’s Low computational Limited to text-only
Perception descriptions native text processing) overhead; seamless environments; cannot
integration with LLM; ideal process visual or other
for text-driven environments non-textual data
Multimodal Text, Vision-Language Models Processes diverse data types; High computational cost,
Perception image/video (e.g., CLIP, ViT), suitable for GUIs and struggles with precise
embeddings, Multimodal LLMs, real-world tasks; leverages spatial tasks and requires
audio transcripts preprocessing tools (e.g., advanced VLMs extensive training data
CNNs, ASR)
Information JSON, XML, Parsers, database query Precise semantic Limited to environments
Tree/Structured database records, tools, accessibility understanding; efficient for with structured data and
Data Perception Ally trees frameworks structured environments like requires predefined schemas

Tool-Augmented
Perception

Tool outputs
(text, JSON,
numerical data)

External APIs, code
interpreters, sensor
interfaces, web search
tools

GUIs or databases

Extends perception to
real-time and specialized
data; highly flexible and
dynamic

or parsing logic

Dependent on tool
availability and reliability,
complex integration and
error handling

14 de Lamo et al.

Having established how the perception system equips an LLM agent with a
comprehensive understanding of the GUI environment, as summarized in the
preceding table, the next critical component is the reasoning system. This system
leverages the processed perceptual input to make informed decisions and execute
complex tasks.

4 Reasoning System

4.1 Task Decomposition

A key tactic for helping LLM agents solve complicated problems is task decom-
position. This strategy divides the problem into smaller and easier-to-manage
subtasks. This approach, akin to the “divide and conquer” algorithmic paradigm,
simplifies the planning process. The procedure involves two main steps: first,
the “decompose” step, where the complex task is broken into a set of subtasks;
and second, the “subplan” step, where for each subtask a plan is formulated [26].
This systematic breakdown helps in navigating intricate real-world scenarios that
would otherwise be challenging to address with a single-step planning process.

Current methodologies for task decomposition broadly fall into two categories:
Decomposition first and Interleaved decomposition [26]. Decomposition first
methods, as seen in systems like HuggingGPT [48] and Plan-and-Solve [55],
initially decompose the entire task into sub-goals and then proceed to plan
for each sub-goal sequentially. HuggingGPT, for instance, explicitly instructs
the LLM to break down multimodal tasks and define dependencies between
subtasks [48]. A slightly modified version of the Decomposition first approach is
DPPM (Decompose, Plan in Parallel, and Merge). It addresses the limitations of
existing planning methods, such as:

1. Handling heavy constraints

2. Carrying errors from the planning of previous steps
3. Forgetting the main goal

4. Cohesion between subtasks

DPPM tackles these problems with the following methods: First, it decomposes
the complex task into subtasks. Second, it generates subplans for each of these
subtasks concurrently using individual LLM agents. This parallel planning allows
each agent to focus only on its assigned subtask, promoting independent work
and avoiding the cascading errors that can occur when subplans are sequentially
dependent. Finally, DPPM merges these independently generated local subplans
into a coherent global plan [36]. Although this method can struggle to adapt
well to unexpected environmental problems, this limitation can be mitigated by
reflecting on the plan after each execution step.

In contrast, interleaved decomposition methods, such as Chain-of-Thought
(CoT) [60] and ReAct [66], interleave the decomposition and subtask planning
process, revealing only one or two subtasks at a time based on the current
state. This dynamic adjustment based on environmental feedback enhances fault

Building Autonomous LLM Agents 15

tolerance, although excessively long trajectories in complex tasks can sometimes
lead to hallucinations or deviation from original goals [26].

Further advancements in task decomposition and planning strategies include
approaches such as RePrompting and ReWOO. RePrompting involves checking if
each step of a plan meets necessary prerequisites before execution. If a step fails
due to unmet prerequisites, a precondition error message is introduced, prompting
the LLM to regenerate the plan with corrective actions [35]. ReWOO introduces
a modular paradigm that decouples reasoning from external observations, where
agents first generate comprehensive plans and obtain observations independently,
then combine them to derive final results [63].

LLM-Agent

O= &

CAN

Sub-Task, Sub-Task, Sub-Task;

2 A
Sub-Plans KR

Sub-Plan; Sub-Plan, Sub-Plan,

e

Final Plan

LLM-Agent

|::>

Su-ask, slnask2 Suhask,

Sub-Plan, Sub-Plan, Sub-Plan,

LLM-Agent

= &
7N

Sub-Task, Sub-Task, Sub-Task,

C e ¢

Sub-Plan, Sub-Plan, Sub-Plan,

Final Plan Final Plan
(a) Sf.fq_uentlal) (b) ln_te_rleaved) (¢) DPPM
Decomposition-Planning Decomposition-Planning

Fig. 5. Comparison of different types of planning frameworks, including sequential
decomposition-planning, interleaved decomposition-planning, and DPPM [36].

4.2 Multi-Plan Generation and Selection

Due to the inherent complexity of tasks and the uncertainty associated with
LLMs, a single plan generated by an LLM Agent may often be suboptimal or
even infeasible. To address this, multi-plan selection emerges as a more robust
approach, focusing on leading the LLM to explore multiple alternative plans
for a given task [58]. This methodology involves two main stages: multi-plan
generation and optimal plan selection [26]. Multi-plan generation aims to create a
diverse set of candidate plans, often by leveraging the uncertainty in the decoding
process of generative models.
There are various strategies:

16 de Lamo et al.

— Self-consistent CoT (CoT-SC): This approach generates various reasoning
paths and their corresponding answers using Chain of Thought (CoT), then
selects the answer with the highest frequency as the final output [58].

— Tree-of-Thought (ToT) and Graph of Thoughts (GoT): ToT gener-
ates plans using a tree-like reasoning structure where each node represents
an intermediate “thought.” The selection of these steps is based on LLM
evaluations. Unlike CoT-SC, ToT queries LLMs for each reasoning step [65].
Graph-of-Thought (GoT) extends the tree-like reasoning structure of ToT
to graph structures. It supports arbitrary thought aggregation and allows
for transformations of thoughts, leading to more powerful prompting strate-
gies [4].

Y Majority vote

(d) Tree of Thoughts (ToT)

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (10) Prompting (CoT) with CoT (CoT-SC)

Fig. 6. Schematic illustrating various approaches to problem solving with LLMs [65].

— LLM-MCTS and RAP: These methods leverage LLMs as a heuristic policy
function for the Monte Carlo Tree Search (MCTS). Multiple potential actions
(or plans) are obtained through multiple calls to the LLM during the MCTS
process [68]. RAP [24] specifically builds a world model to simulate potential
benefits of different plans using MCTS to generate the final plan.

Once a set of candidate plans is generated, the next step is plan selection,
where different search algorithms are employed [26]. Self-consistency, for instance,
utilizes a simple majority vote strategy to identify the most suitable plan [58].
More advanced methods like Tree-of-Thought leverage tree search algorithms
such as conventional Breadth-First Search (BFS) and Depth-First Search (DFS)
for expansion and selection, evaluating multiple actions to choose the optimal
one [65]. Similarly, LLM-MCTS and RAP adopt tree structures to facilitate
multi-plan searches using the MCTS algorithm [24]. The scalability of multi-
plan selection is a significant advantage, allowing for a broader exploration of
solutions within expansive search spaces. However, this comes with trade-offs like

Building Autonomous LLM Agents 17

increased computational demands. Furthermore, the reliance on LLMs for plan
evaluation introduces challenges regarding their performance in ranking tasks
and the potential for randomness due to the stochastic nature of LLMs, which
can affect the consistency and reliability of chosen plans [26].

While multi-plan selection enables LLLM agents to explore and evaluate multi-
ple potential solutions prior to execution, the reasoning system is further enhanced
by the process of reflection. This mechanism allows agents to evaluate their ac-
tions and outcomes after the execution, encouraging continuous improvement
and adaptability in dynamic environments.

4.3 Reflection

Reflection, in the context of LLM agents, refers to the agent’s ability to critically
evaluate its own past actions, reasoning, and outcomes, and then use these
insights to improve its future performance. This allows agents to learn from their
mistakes or inefficiencies without human intervention.

Key characteristics of reflection include:

— Self-Evaluation: The agent examines its completed (or ongoing) task, its
generated plans, and the results of its actions. This often involves comparing
actual and expected outcomes.

— Error Detection and Analysis: Identifying where things went wrong,
why a plan failed, or where the reasoning failed. This can be due to misun-
derstandings of the prompt, incorrect tool usage, logical inconsistencies, or
environmental changes. Papers like [49] and [38] exemplify this capability,
where agents analyze their own outputs or execution traces to pinpoint issues.

— Correction and Improvement: Based on the analysis, the agent gener-
ates actionable insights. This might involve modifying its planning strategy,
correcting its reasoning process, learning better ways to use tools, updating
its “memory” or state [49], or generating a revised plan or a new set of
actions [6,38].

— Goal-Driven Reflection: Agents can reflect not just on errors, but also on
efficiency or completeness, aiming to optimize their path to the goal even if
no explicit error occurred.

Building on the conceptual framework of reflection and its key characteristics,
we now explore the practical steps and components required to implement an
effective reflection system in LLM agents.

How to Implement a Reflection System: A Reflection system, as described in
the paper “Reflection: Language Agents with Verbal Reinforcement Learning,” [49]
is a framework designed to improve the performance of language agents through
linguistic feedback rather than traditional weight updates. It operates iteratively,
allowing an agent to learn from its past mistakes by writing the feedback and

18 de Lamo et al.

storing and using these reflections in the next iterations. Here’s a brief explanation
of how to implement such a system:
Core Components:

— Actor: This is typically a LLM that generates text and actions based on the
current state observations and its memory.

— Evaluator: This component assesses the quality of the Actor’s generated
outputs. It takes a complete trajectory (sequence of actions and observations)
and computes a reward score. Evaluation can be based on exact match
grading, predefined heuristics, or even another LLM instance.

— Self-Reflection Model: Another LLM serves as the self-reflection model
and is responsible for generating verbal self-reflections. Given a sparse reward
signal (e.g., success/fail) and the current trajectory, it produces nuanced and
specific feedback.

The paper “DEVIL’S ADVOCATE: Anticipatory Reflection for LLM
Agents” [53] introduces a distinct perspective: Anticipatory Reflection. This
consists of the agent proactively reflecting on potential failures and considering
alternative remedies before executing an action, essentially acting as a “devil’s
advocate” to challenge its own proposed steps. This front-loaded introspection
enhances consistency and adaptability by allowing the agent to anticipate and
mitigate challenges, improving its ability to navigate complex tasks effectively.

4.4 Example of a Reasoning System

A reasoning system can be developed by integrating some of the features men-
tioned above. Its core mechanism could be DPPM (Decompose, Plan in Parallel,
and Merge).

First, the agent would decompose the main task into smaller subtasks. Then,
in separate calls to an LLM, different planning options would be generated for each
subtask. While generating these options, the LLM would consider potential issues
that might arise during the execution of each subtask. Based on these anticipated
problems, it would propose alternative approaches to either solve or avoid them.
This process combines ideas from Tree-of-thought and the Anticipatory Reflection
of the “DEVIL’S ADVOCATE” paper mentioned before.

Following the Merge step in DPPM, the agent would integrate the different
subtask plans into a final, coherent plan to accomplish the overall goal. To do this,
it would explore various combinations of the subtask options, ensuring that the
resulting plan is logically consistent and that all subplans contribute meaningfully
toward completing the main task.

After the final plan is constructed, it would be divided into groups of executable
steps. As the agent carries out each group of steps, it would receive feedback from
the environment. This feedback would be processed by a reflection mechanism,
which would determine the current scenario:

1. Successful execution: The actions produced the expected result, so the agent
continues with the next group of steps.

Building Autonomous LLM Agents 19

2. Minor error: The actions were close but not entirely accurate (e.g., the agent
missed clicking a button because the coordinates were slightly off). In this
case, the steps would be adjusted and corrected accordingly.

3. Execution failure: The plan cannot be completed as-is (e.g., the button to be
clicked does not exist). Here, the agent must reflect on whether the issue lies
within the specific subplan or if the entire plan needs to be reconsidered. If
only the subplan is flawed, a new one would be generated. If the problem
is more fundamental, the entire planning process would restart from the

beginning.
Task
[Sub-task 1] [Sub-task 2] [Sub-task 3]
Sub-plan1 Sub-plan 3
‘pan Sub-plan 2 u Ap an
« option 1 tion 1 « option 1
« option 2 opt!on 2 « option 2
« option 3 option « option 3
All the plan Sub-plan 1
needstobe J*—— | needstobe
changed changed
Final plan

Reflection

Part 1 steps > Part 2 steps

environment
feedback

—>
The steps Incorrect Correct
can't be done, actions results

Fig. 7. Flowchart of a Reasoning System Using Decompose, Plan, and Merge (DPPM)
approach with a reflection system

20 de Lamo et al.

Having illustrated how a single LLM agent can leverage a reasoning system
like DPPM, combined with reflection, we now explore how multi-agent sys-
tems distribute these processes across specialized components to achieve greater
scalability and efficiency.

4.5 Multi-Agent Systems

Expanding on the idea of multi-agent systems, a single agent can be made up
of different specialized “experts,” each of whom focuses on a distinct aspect of
the interaction or reasoning. This modularity enables specialization at each step,
increasing its capabilities and robustness [5]. Here are some examples of such
useful experts that an LLM agent could integrate:

— Planning Expert: This expert focuses on strategic thinking and task
decomposition. Its role is to break down complex objectives into a series of
manageable subtasks. This aligns with the actor component discussed in the
reflection system, where agents perform reasoning and planning to undertake
complex tasks [33].

— Reflection Expert: It is dedicated to evaluating plans, responses, and
overall performance. This aligns with the evaluator component discussed in
the reflection system [33].

— Error Handling Expert: Specifically focused on identifying, diagnosing,
and suggesting recovery strategies for errors. This expert could analyze logs,
identify common failure patterns, and propose fixes. For example, it could
propose to scroll down if an item is not found in a webpage [51]. It can also
support self-healing behaviors in adaptive architectures [19].

— Memory Management Expert: Responsible for handling the agent’s
memory. This expert ensures that relevant information is retrieved efficiently
and that the agent’s context is maintained effectively, which is a critical
challenge in LLM-based multi-agent systems [23,33].

— Action Expert: This expert knows how to translate plans into concrete
interactions with the environment. It’s skilled in generating the necessary
commands or API calls to interact with external tools, web interfaces, or
other systems. For example, it is responsible for creating the move and click
mouse movements in benchmarks like OSWorld. [21,33, 71].

In addition to the experts mentioned above, there could be other helpful
experts depending on the use case. For example, there could be a Coding Ex-
pert for generating, debugging, and optimizing code [51]; an Information Re-
trieval Expert for efficiently acquiring knowledge from external sources [21,33];
a Human-Computer Interaction (HCI) Expert for optimizing user experience
through adaptive and intuitive communication; a Constraint Satisfaction Expert
for ensuring adherence to predefined rules, constraints, and assurances in vari-
ous applications [21], who can also leverage existing model-driven verification
tools [12,18]; and a Security Expert for mitigating vulnerabilities, promoting
secure practices, and monitoring risks in multi-agent interactions [21,51].

Building Autonomous LLM Agents 21

Having outlined some possible experts within multi-agent systems, we now
turn to the practical process of designing and building these experts.

4.6 How to Build an Expert

Building an “expert” within an LLM agent involves a combination of design
principles and leveraging the capabilities of Large Language Models

Define the Expert’s Role and Scope (Profile and Specialization). The first
step is to precisely define the “distinctive attributes and roles” [51] of your expert.
This involves:

— Clear Specialization: What specific task, domain, or reasoning capability
will this expert excel at? (e.g., planning, code generation, error handling).

— Input and Output: What kind of information does this expert take as
input, and what kind of output does it produce?

— Boundaries: What are the limitations of its expertise? When should other
experts be consulted or take over? [33].

Equip with Knowledge An expert’s effectiveness hinges on its specialized
knowledge. This can be achieved by:

— Targeted Prompting: Crafting precise and detailed prompts to steer the
LLM toward performing as the expert, incorporating specific prompting
techniques such as Chain-of-Thought to enhance its reasoning process.

Fine-tuning (if applicable): For highly specialized tasks, fine-tuning a
base LLM on a dataset relevant to the expert’s domain can enhance its
performance.

External Knowledge Bases: Integrating the expert with external tools or
databases that provide specific, up-to-date, or proprietary knowledge relevant
to its role [21].

— Memory Integration: The expert may have access to its memory (short-
term context and long-term knowledge) which can store past experiences or
knowledge relevant to its task [23,33].

With the methodology for crafting specialized experts established, the follow-
ing example illustrates how these components collaborate within a multi-agent
framework.

Example of a Multi-agent System First, the planning expert decomposes the
main task into subplans. This expert is also responsible for avoiding infinite loops
or repeated attempts if problems occur. Additionally, it collaborates with the
constraint satisfaction expert to ensure that no constraints are violated during
planning.

Next, the execution expert generates the specific actions to be performed in
the environment. If any tools are required, it consults the tool expert to determine

22 de Lamo et al.

which tools to use and how to use them. If executable code is needed beyond
basic actions, the coding expert is called upon to produce it.

Once actions are executed, feedback from the environment is received and
processed by the reflection expert, which works together with the error handling
expert to diagnose issues and propose solutions. Based on this diagnosis, the
reflection expert decides how to proceed.

To improve its recommendations, the memory expert retrieves past experiences
or successful workflows related to similar tasks. This knowledge is used to inform
and enhance the next steps proposed to the planning or execution experts.

éé;::g

Constraint

Planing Expert Expert

Coding Expert
—
Execution \
Expert

Tool use

expert
— ‘//' Memory
D Expert
Reflection
Expert

Error handling
Expert

Fig. 8. Example of the communication between agents in a multi-agent system

23

Building Autonomous LLM Agents

Table 2. Key Components and Techniques for the Reasoning System (Part 1)

Component Description Key Techniques/Approaches Advantages Challenges/Limitations
Task Breaks down complex - Sequential Decomposition: Divides - Simplifies complex - DPPM struggles with
Decomposition tasks into manageable tasks into sequential subgoals and plans problem-solving. unexpected environmental
subtasks to simplify (e.g., Divide-and-Conquer). - DPPM reduces changes.
planning and - Interleaved Decomposition: cascading errors via - Interleaved methods may
execution. Dynamically adjusts subtasks based on parallel planning. lead to hallucinations or
feedback (e.g., Chain-of-Thought [CoT], - Interleaved methods deviation in long tasks.
ReAct). enhance fault
- DPPM (Decompose, Plan in tolerance.
Parallel, Merge): Decomposes tasks,
plans subtasks concurrently, and merges
into a coherent global plan.
Multi-Plan Generates multiple - Self-consistent CoT (CoT-SC): - Explores diverse - High computational
Generation and candidate plans and Generates multiple reasoning paths and solutions for robust demands.
Selection selects the optimal one selects the most frequent answer. planning. - Stochastic nature of LLMs

to address task - Tree-of-Thought (ToT): Uses tree-like
uncertainty. reasoning structures for plan generation.
- Graph-of-Thoughts (GoT): Extends
ToT with graph structures for flexible
aggregation.
- LLM-MCTS and RAP: Use Monte
Carlo Tree Search for plan generation and
selection.

- Scalable for
complex tasks with
large search spaces.

may affect plan consistency.
- Challenges in ranking and
evaluating plans.

de Lamo et al.

24

Table 3. Key Components and Techniques for the Reasoning System (Part 2)

Component Description Key Techniques/Approaches Advantages Challenges/Limitations
Reflection Allows agents to - Self-Evaluation: Compares actual vs. - Enables learning - Requires robust feedback
evaluate actions expected outcomes. from mistakes mechanisms.
post-execution, - Error Detection and Analysis: without human - May be limited by the
identify errors, and Identifies and analyzes errors (e.g., intervention. agent’s ability to accurately
improve future incorrect tool usage, logical flaws). - Enhances self-evaluate.
performance. - Correction and Improvement: adaptability and
Adjusts plans or strategies based on efficiency.
analysis. - Anticipatory
- Anticipatory Reflection (DEVIL’S reflection improves
ADVOCATE): Proactively considers consistency.
potential failures before execution.
Multi-Agent Distributes reasoning - Planning Expert: Handles task - Enhances - Requires careful
Systems tasks across decomposition and strategic planning. modularity and coordination between
specialized “experts” - Reflection Expert: Evaluates plans and robustness. experts.
for scalability and suggests improvements. - Leverages - Potential for increased
efficiency. - Error Handling Expert: Diagnoses specialized expertise complexity in system design.
and proposes fixes for runtime errors. for complex tasks. - Security risks in

- Others: Includes Memory Management,
Action, Coding, Information Retrieval,
Dialogue Management, HCI, Constraint
Satisfaction, and Security Experts.

- Improves scalability multi-agent interactions.
through division of
labor.

Building Autonomous LLM Agents 25

Having explored how reasoning systems enable LLM agents to plan, reflect,
and collaborate on complex tasks, we now consider the memory system, which
provides the critical foundation for retaining and applying past experiences to
inform and enhance these reasoning processes.

5 Memory System

The memory system empowers LLM agents to manage information across varying
time scales, with long-term memory anchoring sustained knowledge retention
while short-term memory facilitates immediate contextual awareness.

5.1 Long-term memory

Long-term memory in LLM agents is crucial for sustained interaction and for
the models to evolve and adapt over time. It allows agents to store relevant
past memories and learn information from previous interactions. It also enables
the agent to retain knowledge apart from its pre-trained knowledge. There are
different ways of implementing it:

— Embodied Memory: In the context of LLMs, “embodied memory” often
refers to the idea that an agent’s experiences and learned behaviors become
ingrained directly within its model parameters (weights) through continuous
learning processes like fine-tuning. Unlike external memory systems, this type
of memory is build into the model itself. When an LLM is fine-tuned on new
data, it adjusts its weights, effectively encoding new “facts” or “experiences”
directly into its neural network. This causes the model to act in ways similar
to what it has learned from these experiences [62].

— RAG: Retrieval-Augmented Generation (RAG) is a technique that enhances

LLMs by using external knowledge to improve the accuracy of its responses.
It operates in two main phases: retrieval and augmentation. Using a query, a
retriever component first looks through an external knowledge base (often
indexed by vector embeddings) to locate relevant documents. This gives the
LLM access to updated and precise information that might not be encoded
in its training data or within its immediate context window.
Once the relevant information is retrieved, it is added to the LLM context
alongside the original query. This augmented input enables the LLM to gener-
ate responses that are based on company files or personal documents making
the response precise for the specific use case and reducing the likelihood
of “hallucinations” [31].

— SQL Database: SQL databases are used to store structured knowledge, such
as information about employees, orders, or other data that can be stored in a
table. By converting natural language queries into SQL queries, text-to-SQL
techniques facilitate reliable database interaction. Transformer-based models
are especially well-suited for producing intricate SQL queries because of their
attention mechanism [72].

26 de Lamo et al.

5.2 Short-term memory

Short-term memory in LLM agents is analogous to the input information main-
tained within the context window, which acts as a temporary workspace [54].

Regardless of whether it’s for long-term retention or immediate contextual
awareness, the memory module’s effectiveness hinges on what kind of data to
store.

5.3 What Kind of Data to Store

The memory module within an LLM agent’s architecture is designed to store
diverse types of information perceived from its environment and interactions.
This stored data is then used to make better decisions, enabling the agent to
accumulate experiences, evolve, and behave in a more consistent and effective
manner.

— Experiences: It is beneficial to store records of both successful and failed
tasks. Research has indicated that even failed experiences, when appropriately
logged and distinguished as such, can be valuable. By explicitly noting a “failed
experience,” LLMs can learn to avoid repeating similar mistakes in the future.
This continuous learning from past interactions, including the identification
of “invalid action filtering,” contributes to the agent’s robust development and
ability to adapt [1,22]. To store an experience, you capture a task’s natural
language instruction (e.g., “Who ordered order 01307”) and the sequence
of steps taken to solve it, where each step includes the agent’s observation
of the environment (e.g., “The current page shows order 0130”) and the
action performed (e.g., click(“126”) or stop()). This data, structured as an
experience with the instruction and a trajectory of observation-action pairs,
is saved in a storage system like a database or a JSON file within a collection
of experiences. This format ensures that the experience is retrievable for
later use, such as inducing a workflow with a summarized description and
generalized steps, which can then be integrated into the agent’s memory to
guide future tasks [59)].

— Procedures: LLM agents can learn reusable task workflows from past expe-
riences to guide future actions, similar to humans. Agent Workflow Memory
(AWM) is a method that induces commonly reused routines (workflows) from
training examples and then selectively provides these workflows to the agent
to guide subsequent generations [59].

— Knowledge: This category encompasses external information received as
facts, such as data from articles, company-specific information, details about
machinery, and internal company rules [11], including document-based dis-
covery pipelines in microservices architectures [17].

— User information: Beyond just user preferences, this includes personal
information that the user has supplied, such as details about their past activ-
ities (e.g., where they spent the last Christmas) or background (e.g., where

Building Autonomous LLM Agents 27

their parents are from). Mechanisms like MemoryBank aim to comprehend
and adapt to a user’s personality over time by synthesizing information from
previous interactions, which inherently involves storing and utilizing these
personal details [69].

While defining what kind of data to store is crucial for an LLM agent’s
effectiveness, the utility and management of this stored information are inherently
subject to several limitations.

5.4 Limitations

— Context Window: Large Language Models (LLMs) operate with a funda-
mental constraint known as the “context window” or “context length.” This
refers to the maximum amount of text (measured in “tokens,” which can
be words, parts of words, or punctuation) that an LLM can process and
consider at any one time when generating a response or performing a task.
The primary impact of a limited context window is that LLMs cannot directly
integrate or utilize all information in very long sequences. The easiest way to
overcome this is to truncate large texts or summarize them [57].

— Memory Duplication: When storing information in memory, a potential
issue is handling data that is similar to existing records. Various methods have
been developed to integrate new and previous records to address this “Mem-
ory Duplication” problem. For instance, in one approach, successful action
sequences related to the same sub-goal are stored in a list. Once this list
reaches a size of five, all sequences within it are condensed into a unified plan
solution using LLMs, and the original sequences are then replaced with this
newly generated one. Another method aggregates duplicate information by
accumulating counts, thereby avoiding redundant storage [54].

de Lamo et al.

28

Table 4. Memory Components for LLM-Based Agents (Part 1)

Component

Description

Key Techniques/Approaches

Advantages Challenges/Limitations

Long-term
Memory

Short-term
Memory

Stores knowledge for - Embodied Memory: Experiences are

sustained retention,
enabling agents to
recall past
experiences and
synthesize
information from

ingrained in the model’s parameters
through continuous learning (e.g.,
fine-tuning).

- Retrieval-Augmented Generation
(RAG): Retrieves relevant documents
from an external knowledge base using

previous interactions. vector embeddings to enhance responses.

- SQL Database: Stores structured data
(e.g., employee or order details) accessible
via text-to-SQL queries generated by
LLMs.

Acts as a temporary - Context Window Management:
workspace within the Maintains recent conversational or input

LLM’s context
window, holding

data within the transformer’s limited
context window.

immediate contextual - Chunking and Summarization:

information for
ongoing tasks.

Breaks down large inputs into manageable
pieces and condenses essential information
to fit within the context window.

- Enables persistent - Fine-tuning for embodied
knowledge retention. memory is computationally
- RAG reduces expensive.

hallucinations by - RAG requires efficient
grounding responses indexing and retrieval

in verifiable sources. systems.

- SQL databases - Text-to-SQL generation
support structured, may struggle with complex
queryable data queries or dependencies.
access.

- Facilitates - Limited by context
immediate contextual window size, leading to
awareness. truncation of older data.

- Chunking and - Summarization may omit
summarization critical details if not

prevent information carefully designed.
loss in long
sequences.

29

Building Autonomous LLM Agents

Table 5. Memory Components for LLM-Based Agents (Part 2)

Component Description Key Techniques/Approaches Advantages Challenges/Limitations
Data Storage Defines the types of - Procedures (Agent Workflow - Workflows improve - Managing diverse data
Types information stored to Memory - AWM): Stores reusable task efficiency by reusing types requires robust
support agent workflows derived from past experiences or successful routines. storage systems.
functionality. queries to guide future actions. - External knowledge - Privacy concerns with
- Knowledge: Includes external facts (e.g., enhances response storing user information.
articles, company rules) for accuracy. - Risk of outdated or
context-specific responses. - User information irrelevant knowledge
- User Information: Stores personal user supports affecting performance.
details (e.g., preferences, past activities) personalized
via systems like MemoryBank for interactions.
personalized responses.
Memory Addresses challenges - Memory Duplication: Consolidates - Reduces - Duplication consolidation
Management in storing and similar records (e.g., combining successful redundancy and may lose nuanced details.
Issues retrieving information action sequences into a unified plan or storage inefficiency. - FIFO overwriting risks
efficiently. aggregating counts). losing valuable older data.

- Requires careful design to
balance storage and
retrieval efficiency.

30 de Lamo et al.

With its robust memory system supporting processed observations and for-
mulated plans, an LLM agent’s operational flow then progresses to the execution
system. This critical component is responsible for translating that internal un-
derstanding and knowledge into concrete interactions and actions within its
environment.

6 Execution System

This system enables the agent to interact with its environment. It encompasses
the mechanisms for tool orchestration, action invocation, and the immediate
processing of action outcomes [61]. LLM agents interact with their environment
and execute actions through several key mechanisms that bridge the gap between
language understanding and real-world task automation [21]. These mechanisms
include:

6.1 Tool and API Integration

The most fundamental way LLM agents execute actions is through structured
tool calling or function calling capabilities. Agents are given predefined functions,
like file operations, database queries, web requests, or system commands, that
correspond to particular actions they can perform. The agent generates structured
outputs (typically JSON) that specify which tool to use and what parameters
to provide. With this method, agents can carry out specific tasks like sending
emails, generating files, performing computations, or getting data from other
systems. [61].

6.2 Multimodal Action Spaces

Multimodal action spaces represent one of the most significant advances in LLM
agent capabilities, enabling them to interact with environments beyond pure text
interfaces [8,70]. Here’s a deeper exploration:

Visual Interface Automation: LLM agents can control graphical user inter-
faces through computer vision and automation frameworks to generate precise
mouse clicks, keyboard inputs, and drag-and-drop operations [41]. This capa-
bility allows agents to automate tasks in any software application, from web
browsers to desktop applications, even when no programmatic API exists. The
technical implementation typically involves vision-language models that can
process screenshots and generate coordinate-based actions, or integration with
UI automation libraries that can identify elements through accessibility trees or
DOM structures [46].

Building Autonomous LLM Agents 31

Code Generation and Execution: A particularly powerful multimodal capa-
bility is dynamic code generation where agents write executable code in various
programming languages to solve specific problems. This approach is especially
valuable for data manipulation tasks, complex calculations, file processing, and
integration between different systems. Agents can write Python scripts for data
analysis, generate SQL queries for database operations, create shell scripts for
system administration, or produce HTML/CSS/JavaScript for web-based solu-
tions [10,42].

Robotic and Physical System Control: In robotics applications, LLM
agents can control physical systems through appropriate APIs and sensor in-
tegrations [61]. They process sensor data (cameras, force sensors, temperature
sensors) to understand the physical environment, generate motion plans and
control commands, coordinate multiple actuators and subsystems, and adapt to
real-time feedback from the physical world.

6.3 Integration Challenges and Solutions

Multimodal execution presents several technical challenges [21]. Latency and
coordination issues arise when combining different modalities, as visual pro-
cessing and physical actions often require different timing considerations. Error
propagation becomes more complex when failures can occur at multiple levels
(perception, planning, execution). State synchronization requires careful man-
agement to ensure the agent’s understanding remains consistent across different
modalities [27].

7 Discussion

7.1 Limitations

While our review sheds light on the foundational elements of intelligent LLM
agents, several limitations warrant consideration. Firstly, these agents currently
fail at certain operations that humans can easily perform, largely due to a
lack of sufficient experience interacting in specific environments. Teaching these
experiences to LLMs is exceptionally costly, often requiring extensive fine-tuning.
This challenge is compounded by the fact that many advanced models are closed-
source, making it difficult to fine-tune this models. Moreover, acquiring the
necessary data for targeted training is also time-consuming. Secondly, while
LLMs excel at generating and understanding text, their ability to generate
precise actions in the real world or within graphical user interfaces (GUIs)
remains limited. Thirdly, despite advancements, visual perception in these agents
is not yet as robust as required, with many mistakes stemming from an incomplete
or inaccurate understanding of the environment.

32 de Lamo et al.

7.2 Implications

The review presented in this paper has significant implications for the future
of artificial intelligence. By demonstrating that LLM agents can move beyond
simple language generation to exhibit capabilities akin to human cognition, we
open doors for their application in highly complex domains requiring nuanced
understanding and decision-making, such as scientific discovery, personalized
education, and advanced robotics. The modular design and the integration of
specialized components suggest a promising path towards building more robust
and adaptable Al systems that can learn and evolve. Furthermore, the memory
capabilities highlighted in this review could lead to the development of Al
assistants that are not only more helpful but also more reliable and context-
aware.

7.3 Possible Extensions

Future research can extend this work in several promising directions. One critical
area is to explore more advanced mechanisms for knowledge acquisition and
self-correction in LLM agents, enabling them to continuously learn from new
experiences and rectify errors without extensive human intervention. However,
it would also be very interesting to investigate how these agents can learn to
accomplish a task after just a single demonstration with human help, subse-
quently performing it autonomously. This “learn-from-one-shot” paradigm could
significantly reduce the cost and effort of training LLM agents in new domains.
An even more ambitious extension could be developing agents where humans act
as assistants. This would improve productivity by 10x.

8 Conclusion

This paper set out to explore the intricate design and implementation strategies
for creating intelligent LLM agents, focusing on their core capabilities across
perception, memory, reasoning, planning, and execution. Our exploration revealed
that LLM agents are not merely large language models, but complex systems built
upon specialized components that mimic human cognitive processes. Specifically,
we reviewed reasoning techniques, such as Chain-of-Thought and Tree-of-Thought,
that significantly enhance an agent’s problem-solving abilities.

Moreover, the review showed that using different experts to focus on each
part of the reasoning improves performance. Another conclusion from the review
is that robust memory systems are crucial for personalized responses, continuous
learning, and long-term coherence and adaptability.

Furthermore, our analysis highlighted the critical role of a well-implemented
perception system in enabling agents to interpret diverse environmental inputs,
and the necessity of action systems for translating decisions into tangible outcomes.
These findings directly address our initial objectives by illustrating how specific
architectural designs and advanced techniques contribute to building more capable

Building Autonomous LLM Agents 33

and generalized LLM agents, moving beyond simple workflow automation towards
truly autonomous and intelligent entities.

34

de Lamo et al.

References

10.

11.

12.

13.

14.

15.

. Alazraki, L., Mozes, M., Campos, J.A., Yi-Chern, T., Rei, M., Bartolo, M.: No

need for explanations: Llms can implicitly learn from mistakes in-context. arXiv

preprint (2025), https://arxiv.org/abs/2502.08550

. Anthony Brohan, e.a.: Rt-2: Vision-language-action models transfer web knowledge

to robotic control. arXiv preprint (2023), https://arxiv.org/abs/2307.15818

. Anthropic: Building effective agents. https://www.anthropic.com/engineering/

building-effective-agents (2024), accessed: June 5 2025

. Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Podstawski, M., Gianinazzi,

L., Gajda, J., Lehmann, T., Niewiadomski, H., Nyczyk, P., Hoefler, T.: Graph of
Thoughts: Solving Elaborate Problems with Large Language Models. arXiv preprint
(2023), https://arxiv.org/abs/2308.09687

. Cai, W., Jiang, J., Wang, F., Tang, J., Kim, S., Huang, J.: A survey on mixture

of experts in large language models. arXiv preprint (2025), https://arxiv.org/pdf/
2407.06204.pdf

. Chen, X., Lin, M., Scharli, N., Zhou, D.: Teaching large language models to self-

debug. arXiv preprint (2023), https://arxiv.org/abs/2304.05128

. Chen, Y., Cui, W., Chen, Y., Tan, M., Zhang, X., Zhao, D., Wang, H.: Robogpt:

an intelligent agent of making embodied long-term decisions for daily instruction
tasks. arXiv preprint (2024), https://arxiv.org/abs/2311.15649

. Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang, B., Sun, H., Su, Y.:

Mind2web: Towards a generalist agent for the web. arXiv preprint (2023), https:
//arxiv.org/abs/2306.06070

. Florian Bordes, e.a.: An introduction to vision-language models. arXiv preprint

arXiv:2405.17247 (2024), https://arxiv.org/pdf/2405.17247.pdf

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., Neubig, G.:
Pal: Program-aided language models. arXiv preprint (2023), https://arxiv.org/abs/
2211.10435

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M.,
Wang, H.: Retrieval-augmented generation for large language models: A survey.
arXiv preprint (2024), https://arxiv.org/abs/2312.10997

Gidey, H.K., Collins, A., Marmsoler, D.: Modeling and verifying dynamic architec-
tures with factum studio. In: Formal Aspects of Component Software, FACS 2019,.
Springer (2019). https://doi.org,/10.1007,/978-3-030-40914-2 13, https://doi.org/
10.1007/978-3-030-40914-2 13

Gidey, H.K., Hillmann, P., Karcher, A., Knoll, A.: Towards cognitive bots: Archi-
tectural research challenges. In: Artificial General Intelligence, AGI 2023,. Springer
(2023). https://doi.org/10.1007/978-3-031-33469-6 11, https://doi.org/10.1007/
978-3-031-33469-6 11

Gidey, H.K., Hillmann, P., Karcher, A., Knoll, A.: User-like bots for cognitive
automation: A survey. In: Machine Learning, Optimization, and Data Science,
LOD 2023,. Springer (2023). https://doi.org/10.1007/978-3-031-53966-4 29, https:
//doi.org/10.1007/978-3-031-53966-4_ 29

Gidey, H.K., Huber, N., Lenz, A., Knoll, A.: Affordance representation and recogni-
tion for Autonomous Agents. In: Proceedings of the Second International Workshop
on Hypermedia Multi-Agent Systems (HyperAgents 2025), in conjunction with the
28th European Conference on Artificial Intelligence (ECAI 2025), Bologna, Italy,
October 26, 2025. Bologna, Italy (Oct 2025)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Building Autonomous LLM Agents 35

Gidey, H.K., Hueber, N., Lenz, A., Knoll, A.: Visual perception patterns for software
agents (2025), preprint

Gidey, H.K., Kesseler, M., Stangl, P., Hillmann, P., Karcher, A.: Document-based
knowledge discovery with microservices architecture. In: Bennour, A., Ensari, T.,
Kessentini, Y., Eom, S. (eds.) Intelligent Systems and Pattern Recognition: ISPR
2022. Communications in Computer and Information Science, vol. 1589, pp. 146—
161. Springer, Cham (Mar 2022). https://doi.org/10.1007/978-3-031-08277-1 13,
https://doi.org/10.1007/978-3-031-08277-1 13

Gidey, H.K., Marmsoler, D.: FACTuM Studio. https://habtom.github.io/factum/
(2018)

Gidey, H.K., Marmsoler, D., Ascher, D.: Modeling adaptive self-healing systems.
CoRR abs/2304.12773 (Apr 2023). https://doi.org/10.48550/arXiv.2304.12773,
https://arxiv.org/abs/2304.12773

Gidey, H.K., Marmsoler, D., Eckhardt, J.: Grounded architectures: Using grounded
theory for the design of software architectures. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). pp. 141-148. IEEE,
Gothenburg, Sweden (Apr 2017). https://doi.org/10.1109/ICSAW.2017.41, https:
//doi.org/10.1109/ICSAW.2017.41

Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N.V., Wiest, O., Zhang,
X.: Large language model based multi-agents: A survey of progress and challenges.
arXiv preprint (2024), https://arxiv.org/abs/2402.01680

Hamdan, S., Yuret, D.: How much do llms learn from negative examples? arXiv
preprint (2025), https://arxiv.org/abs/2503.14391

Han, S., Zhang, Q., Yao, Y., Jin, W., Xu, Z.: LIm multi-agent systems: Challenges
and open problems. arXiv preprint (2025), https://arxiv.org/abs/2402.03578
Hao, S., Gu, Y., Ma, H., Hong, J.J., Wang, Z., Wang, D.Z., Hu, Z.: Reasoning
with language model is planning with world model. arXiv preprint (2023), https:
//arxiv.org/abs/2305.14992

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng,
W., Feng, X., Qin, B., Liu, T.: A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transac-
tions on Information Systems 43(2) (2025). https://doi.org/10.1145/3703155,
http://dx.doi.org/10.1145/3703155

Huang, X., Liu, W., Chen, X., Wang, X., Wang, H., Lian, D., Wang, Y., Tang,
R., Chen, E.: Understanding the planning of llm agents: A survey. arXiv preprint
(2024), https://arxiv.org/abs/2402.02716

Hwang, J., Tani, J.: Seamless integration and coordination of cognitive skills
in humanoid robots: A deep learning approach. arXiv preprint (2017), https:
//arxiv.org/abs/1706.02423

Jain, J., Yang, J., Shi, H.: Vcoder: Versatile vision encoders for multimodal large
language models. arXiv preprint arXiv:2312.14233 (2023), https://arxiv.org/pdf/
2312.14233.pdf

Jin, H., Huang, L., Cai, H., Yan, J., Li, B., Chen, H.: From LLMs to LLM-based
agents for software engineering: A survey of current, challenges and future. arXiv
preprint (2024), https://arxiv.org/pdf/2408.02479

Kil, J., Song, C.H., Zheng, B., Deng, X., Su, Y., Chao, W.L.: Dual-view visual
contextualization for web navigation. arXiv preprint (2024), https://arxiv.org/abs/
2402.04476

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler,
H., Lewis, M., tau Yih, W., Rocktéaschel, T., Riedel, S., Kiela, D.: Retrieval-

36

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

de Lamo et al.

augmented generation for knowledge-intensive nlp tasks. arXiv preprint (2021),
https://arxiv.org/abs/2005.11401

Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li, Z., Huang, F., Li, Y.: Api-
bank: A comprehensive benchmark for tool-augmented llms. arXiv preprint (2023),
https://arxiv.org/abs/2304.08244

Li, X., Wang, S., Zeng, S., Wu, Y., Yang, Y.: A survey on LLM-based multi-agent
systems: workflow, infrastructure, and challenges. Vicinagearth 1, 9 (2024). https://
doi.org/10.1007 /s44336-024-00009-2, https://doi.org/10.1007/s44336-024-00009-2
Li, Y., Lai, Z., Bao, W., Tan, Z., Dao, A., Sui, K., Shen, J., Liu, D., Liu, H., Kong,
Y.: Visual large language models for generalized and specialized applications. arXiv
preprint arXiv:2501.02765 (2025), https://arxiv.org/abs/2501.02765

Liu, T., Ren, J., Zhang, C.: Planning with large language models via corrective
re-prompting. arXiv preprint (2023), https://arxiv.org/pdf/2305.018323.pdf

Lu, Z., Lu, W., Tao, Y., Dai, Y., Chen, Z., Zhuang, H., Chen, C., Peng, H.,
Zeng, Z.: Decompose, plan in parallel, and merge: A novel paradigm for large
language models based planning with multiple constraints. arXiv preprint (2025),
https://arxiv.org/abs/2506.02683

Macedo, J., Gidey, H.K., Rebuli, K.B., Machado, P.: Evolving user interfaces: A
neuroevolution approach for natural human-machine interaction. In: Johnson, C.,
Rebelo, S.M., Santos, I. (eds.) Artificial Intelligence in Music, Sound, Art and
Design: 13th International Conference, EvoMUSART 2024, Held as Part of EvoStar
2024, Aberystwyth, UK, April 3-5, 2024, Proceedings. Lecture Notes in Computer
Science, vol. 14633, pp. 246-264. Springer, Cham (Apr 2024). https://doi.org/10.
1007/978-3-031-56992-0 16, https://doi.org/10.1007/978-3-031-56992-0 16
Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon,
U., Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder, B.P., Hermann,
K., Welleck, S., Yazdanbakhsh, A., Clark, P.: Self-refine: Iterative refinement with
self-feedback. arXiv preprint (2023), https://arxiv.org/abs/2303.17651

Mi, Y., Gao, Z., Ma, X., Li, Q.: Building llm agents by incorporating insights from
computer systems. arXiv preprint arXiv:2504.04485 (2025), https://arxiv.org/pdf/
2504.04485v1.pdf

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain,
S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou, T., Krueger,
G., Button, K., Knight, M., Chess, B., Schulman, J.: Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint (2022), https://arxiv.org/
abs/2112.09332

Niu, R., Li, J., Wang, S., Fu, Y., Hu, X., Leng, X., Kong, H., Chang, Y., Wang,
Q.: Screenagent: A vision language model-driven computer control agent. In: Pro-
ceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intel-
ligence. pp. 6433-6441. IJCAI-2024, International Joint Conferences on Artifi-
cial Intelligence Organization (Aug 2024). https://doi.org/10.24963 /ijcai.2024 /711,
http://dx.doi.org/10.24963 /ijcai.2024 /711

OpenAl: Code interpreter. OpenAl Platform (2025), https://platform.openai.com/
docs/assistants/tools/code-interpreter, accessed: 26 July 2025

OSWorld Team: Osworld: Benchmarking multimodal agents for open-ended tasks
in real computer environments. https://os-world.github.io/ (2024), accessed: 26
July 2025

Patil, S.G., Zhang, T., Wang, X., Gonzalez, J.E.: Gorilla: Large language model
connected with massive apis. arXiv preprint (2023), https://arxiv.org/pdf/2305.
15334

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Building Autonomous LLM Agents 37

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. arXiv preprint arXiv:2103.00020
(2021), https://arxiv.org/abs/2103.00020

Rawles, C., Li, A., Rodriguez, D., Riva, O., Lillicrap, T.: Android in the wild:
A large-scale dataset for android device control. arXiv preprint (2023), https:
//arxiv.org/abs/2307.10088

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Zettlemoyer, L.,
Cancedda, N., Scialom, T.: Toolformer: Language models can teach themselves to
use tools. arXiv preprint (2023), https://arxiv.org/pdf/2302.04761

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: Hugginggpt: Solving ai
tasks with chatgpt and its friends in hugging face. arXiv preprint (2023), https:
//arxiv.org/abs/2303.17580

Shinn, N., Cassano, F., Berman, E., Gopinath, A., Narasimhan, K., Yao, S.: Re-
flexion: Language agents with verbal reinforcement learning. arXiv preprint (2023),
https://arxiv.org/abs/2303.11366

Song, S., Li, X., Li, S., Zhao, S., Yu, J., Ma, J., Mao, X., Zhang, W.: How to bridge
the gap between modalities: Survey on multimodal large language model. arXiv
preprint arXiv:2311.07594 (2025), https://arxiv.org/abs/2311.07594

Talebirad, Y., Nadiri, A.: Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint (2023), https://arxiv.org/abs/2306.03314
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017),
https://arxiv.org/pdf/1706.03762.pdf

Wang, H., Li, T., Deng, Z., Roth, D., Li, Y.: Devil’s advocate: Anticipatory reflection
for llm agents. arXiv preprint (2024), https://arxiv.org/abs/2405.16334

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z.Y., Tang, J.,
Chen, X., Lin, Y., Zhao, W.X., Wei, Z., Wen, J.R.: A survey on large language
model based autonomous agents. arXiv preprint (2025), https://arxiv.org/pdf/2308.
11432.pdf

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R.K.W., Lim, E.P.: Plan-and-
solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint (2023), https://arxiv.org/abs/2305.04091

Wang, X., Liu, B.: Oscar: Operating system control via state-aware reasoning and re-
planning. arXiv preprint arXiv:2410.18963 (2024), https://arxiv.org/abs/2410.18963
Wang, X., Salmani, M., Omidi, P., Ren, X., Rezagholizadeh, M., Eshaghi, A.:
Beyond the limits: A survey of techniques to extend the context length in large
language models. arXiv preprint (2024), https://arxiv.org/abs/2402.02244

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A.,
Zhou, D.: Self-consistency improves chain of thought reasoning in language models.
arXiv preprint (2023), https://arxiv.org/abs/2203.11171

Wang, Z.Z., Mao, J., Fried, D., Neubig, G.: Agent workflow memory. arXiv preprint
(2024), https://arxiv.org/abs/2409.07429

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q.,
Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint (2023), https://arxiv.org/abs/2201.11903

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin,
S., Zhou, E., Zheng, R., Fan, X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang,
C., Zou, Y., Liu, X., Yin, Z., Dou, S., Weng, R., Zhang, Q., Qin, W., Zheng, Y.,
Qiu, X., Huang, X., Gui, T.: The rise and potential of large language model based
agents: A survey. arXiv preprint (2023), https://arxiv.org/abs/2309.07864

38

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

de Lamo et al.

Xiang, J., Tao, T., Gu, Y., Shu, T., Wang, Z., Yang, Z., Hu, Z.: Language models
meet world models: Embodied experiences enhance language models. arXiv preprint
(2023), https://arxiv.org/abs/2305.10626

Xu, B., Peng, Z., Lei, B., Mukherjee, S., Liu, Y., Xu, D.: Rewoo: Decoupling
reasoning from observations for efficient augmented language models. arXiv preprint
(2023), https://arxiv.org/abs/2305.18323

Yang, J., Zhang, H., Li, F., Zou, X., Li, C., Gao, J.: Set-of-mark prompting unleashes
extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441 (2023),
https://arxiv.org/abs/2310.11441

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T.L., Cao, Y., Narasimhan, K.: Tree
of thoughts: Deliberate problem solving with large language models. arXiv preprint
(2023), https://arxiv.org/abs/2305.10601

Yao, S., Zhao, J., Yu, D., Du, N.; Shafran, 1., Narasimhan, K., Cao, Y.: React:
Synergizing reasoning and acting in language models. arXiv preprint (2023), https:
//arxiv.org/abs/2210.03629

Zhang, D., Yu, Y., Dong, J., Li, C., Su, D., Chu, C., Yu, D.: Mm-llms: Recent
advances in multimodal large language models. arXiv preprint arXiv:2401.13601
(2024), https://arxiv.org/abs/2401.13601

Zhao, Z., Lee, W.S., Hsu, D.: Large language models as commonsense knowledge
for large-scale task planning. In: Thirty-seventh Conference on Neural Information
Processing Systems (2023), https://openreview.net/forum?id=WjplAYBS8IH
Zhong, W., Guo, L., Gao, Q., Ye, H., Wang, Y.: Memorybank: Enhancing large
language models with long-term memory. arXiv preprint (2023), https://arxiv.org/
abs/2305.10250

Zhou, S., Xu, F.F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Ou, T., Bisk, Y.,
Fried, D., Alon, U., Neubig, G.: Webarena: A realistic web environment for building
autonomous agents. arXiv preprint (2024), https://arxiv.org/abs/2307.13854
Zhu, X., Chen, Y., Wang, H., et al.: OSWorld: A realistic benchmark for generalist
agents in operating systems. arXiv preprint (2024), https://arxiv.org/pdf/2404.
07972

Zhu, X., Li, Q., Cui, L., Liu, Y.: Large language model enhanced text-to-sql
generation: A survey. arXiv preprint (2024), https://arxiv.org/abs/2410.06011

